Rapid selection against arbovirus-induced apoptosis during infection of a mosquito vector.
نویسندگان
چکیده
Millions of people are infected each year by arboviruses (arthropod-borne viruses) such as chikungunya, dengue, and West Nile viruses, yet for reasons that are largely unknown, only a relatively small number of mosquito species are able to transmit arboviruses. Understanding the complex factors that determine vector competence could facilitate strategies for controlling arbovirus infections. Apoptosis is a potential antiviral defense response that has been shown to be important in other virus-host systems. However, apoptosis is rarely seen in arbovirus-infected mosquito cells, raising questions about its importance as an antiviral defense in mosquitoes. We tested the effect of stimulating apoptosis during arbovirus infection by infecting Aedes aegypti mosquitoes with a Sindbis virus (SINV) clone called MRE/Rpr, in which the MRE-16 strain of SINV was engineered to express the proapoptotic gene reaper from Drosophila. MRE/Rpr exhibited an impaired infection phenotype that included delayed midgut infection, delayed virus replication, and reduced virus accumulation in saliva. Nucleotide sequencing of the reaper insert in virus populations isolated from individual mosquitoes revealed evidence of rapid and strong selection against maintenance of Reaper expression in MRE/Rpr-infected mosquitoes. The impaired phenotype of MRE/Rpr, coupled with the observed negative selection against Reaper expression, indicates that apoptosis is a powerful defense against arbovirus infection in mosquitoes and suggests that arboviruses have evolved mechanisms to avoid stimulating apoptosis in mosquitoes that serve as vectors.
منابع مشابه
Mosquito Immunity against Arboviruses
Arthropod-borne viruses (arboviruses) pose a significant threat to global health, causing human disease with increasing geographic range and severity. The recent availability of the genome sequences of medically important mosquito species has kick-started investigations into the molecular basis of how mosquito vectors control arbovirus infection. Here, we discuss recent findings concerning the ...
متن کاملThe Antiviral RNAi Response in Vector and Non-vector Cells against Orthobunyaviruses
BACKGROUND Vector arthropods control arbovirus replication and spread through antiviral innate immune responses including RNA interference (RNAi) pathways. Arbovirus infections have been shown to induce the exogenous small interfering RNA (siRNA) and Piwi-interacting RNA (piRNA) pathways, but direct antiviral activity by these host responses in mosquito cells has only been demonstrated against ...
متن کاملFighting Arbovirus Transmission: Natural and Engineered Control of Vector Competence in Aedes Mosquitoes
Control of aedine mosquito vectors, either by mosquito population reduction or replacement with refractory mosquitoes, may play an essential role in the fight against arboviral diseases. In this review, we will focus on the development and application of biological approaches, both natural or engineered, to limit mosquito vector competence for arboviruses. The study of mosquito antiviral immuni...
متن کاملEffects of inducing or inhibiting apoptosis on Sindbis virus replication in mosquito cells.
Sindbis virus (SINV) is a mosquito-borne virus in the genus Alphavirus, family Togaviridae. Like most alphaviruses, SINVs exhibit lytic infection (apoptosis) in many mammalian cell types, but are generally thought to cause persistent infection with only moderate cytopathic effects in mosquito cells. However, there have been several reports of apoptotic-like cell death in mosquitoes infected wit...
متن کاملGenetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes
Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 10 شماره
صفحات -
تاریخ انتشار 2015